Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Vitacoin

Точный прогноз озлокачествления

Машинное обучение предскажет необходимость мастэктомии

Елизавета Ивтушок, N+1

Американские исследователи применили машинное обучение для эффективного прогнозирования развития злокачественной опухоли молочной железы. Алгоритм обучили на данных биопсии пациенток, а точность его предсказания составила 97,4 процента. Статья опубликована в Radiology. 

Наиболее эффективным способом лечения злокачественной опухоли молочной железы является мастэктомия – хирургическое удаление молочной железы. Однако если опухоль доброкачественная, то даже квалифицированный специалист не всегда может с высокой точностью предсказать, насколько велик риск развития рака в будущем. Авторы новой работы представили алгоритм машинного обучения, который по данным биопсии опухоли молочной железы может с высокой точностью определить доброкачественную опухоль с повышенным риском развития рака груди и, соответственно, выявить необходимость последующего хирургического вмешательства. 

Для этого исследователи собрали 1095 изображений биопсии грудной клетки, полученных от 1071 пациентки. Всего среди изображений исследователи обнаружили 1006 опухолей с высоким риском развития рака, из которых 115 привели к развитию рака молочной железы. Для обучения алгоритма ученые отобрали 671 изображение, а остальные использовали в качестве тестовой выборки. 

Алгоритм был разработан при помощи метода машинного обучения random forest – классификатора, который основывается на работе множества деревьев решений. Такая система хранит особенности данных из обучающей выборки и затем применяет их для правильной классификации данных тренировочной выборки.

Система, разработанная исследователями, смогла правильно определить злокачественные опухоли с риском последующего развития рака молочной железы в 97,4 проценте случаев. По оценке авторов, ранняя диагностика патологии при помощи методов машинного обучения могла бы снизить количество необязательных мастэктомий на 30,6 процентов.

В декабре прошлого года ученые впервые успешно применили машинное обучение и анализ распределения пигмента для диагностики меланомы – об этом вы можете прочитать в нашей заметке. А здесь вы можете прочитать об алгоритме, который распознает одиночные (в том числе и раковые) клетки.

Портал «Вечная молодость» http://vechnayamolodost.ruМашинное обучение предскажет необходимость мастэктомии

Елизавета Ивтушок, N+1

Американские исследователи применили машинное обучение для эффективного прогнозирования развития злокачественной опухоли молочной железы. Алгоритм обучили на данных биопсии пациенток, а точность его предсказания составила 97,4 процента. Статья опубликована в Radiology. 

Наиболее эффективным способом лечения злокачественной опухоли молочной железы является мастэктомия – хирургическое удаление молочной железы. Однако если опухоль доброкачественная, то даже квалифицированный специалист не всегда может с высокой точностью предсказать, насколько велик риск развития рака в будущем. Авторы новой работы представили алгоритм машинного обучения, который по данным биопсии опухоли молочной железы может с высокой точностью определить доброкачественную опухоль с повышенным риском развития рака груди и, соответственно, выявить необходимость последующего хирургического вмешательства. 

Для этого исследователи собрали 1095 изображений биопсии грудной клетки, полученных от 1071 пациентки. Всего среди изображений исследователи обнаружили 1006 опухолей с высоким риском развития рака, из которых 115 привели к развитию рака молочной железы. Для обучения алгоритма ученые отобрали 671 изображение, а остальные использовали в качестве тестовой выборки. 

Алгоритм был разработан при помощи метода машинного обучения random forest – классификатора, который основывается на работе множества деревьев решений. Такая система хранит особенности данных из обучающей выборки и затем применяет их для правильной классификации данных тренировочной выборки.

Система, разработанная исследователями, смогла правильно определить злокачественные опухоли с риском последующего развития рака молочной железы в 97,4 проценте случаев. По оценке авторов, ранняя диагностика патологии при помощи методов машинного обучения могла бы снизить количество необязательных мастэктомий на 30,6 процентов.

В декабре прошлого года ученые впервые успешно применили машинное обучение и анализ распределения пигмента для диагностики меланомы – об этом вы можете прочитать в нашей заметке. А здесь вы можете прочитать об алгоритме, который распознает одиночные (в том числе и раковые) клетки.

Портал «Вечная молодость» http://vechnayamolodost.ru


Читать статьи по темам:

рак груди ранняя диагностика компьютеры Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

О вреде ложноположительных результатов

После того, как подозрение на рак груди оказывается ошибочным, женщины склонны откладывать следующую маммографию или даже отказываться от регулярного проведения процедуры.

читать

Ранний прогноз рецидива рака молочной железы

Исследование крови методом ПЦР позволяет обнаружить раковые клетки в среднем за 7,9 месяцев до появления видимых признаков рецидива рака груди у женщин.

читать

Нанопленка для ранней диагностики рака груди

Пленочное тактильное устройство, состоящее из наночастиц и полимеров, определяет в молочной железе наличие и форму опухолей размером менее 10 миллиметров. Его применение позволит почти в 2 раза повысить выживаемость пациенток с раком груди.

читать

Вероятность развития рака груди определит эпигенетика

И у носительниц мутантной копии BRCA1, и у тех, у кого она отсутствует, по анализу свободной ДНК в крови можно задолго до начала болезни найти молекулярную «подпись», связанную с уровнем метилирования ДНК в определенных участках генома.

читать

Защита от рака: профилактика и ранняя диагностика

Победить рак можно только при одном непременном условии: выявить на доклинической стадии. Что этому мешает в России? Что надо сделать, чтобы эти препоны преодолеть?

читать