Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Unpaywall

Хромосомы яйцеклетки в 3D

Российские биологи «заглянули» в ядро оплодотворенной яйцеклетки

Дарья Спасская, N+1

Сотрудники лаборатории Сергея Разина из Института биологии гена РАН в составе международной группы ученых модифицировали метод определения трехмерной организации хромосом и применили его для изучения пространственной организации ДНК в зрелых яйцеклетках до и после оплодотворения. Статья Ilya M. Flyamer et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition опубликована в журнале Nature.

Высокий уровень сложности многоклеточных организмов определяется большим разнообразием типов клеток, выполняющих самые разные функции. Это разнообразие появляется в ходе дифференцировки клеток, которая происходит начиная с самых ранних стадий эмбрионального развития. Отправной точкой для развития и дифференцировки является зигота – клетка, которая образуется после оплодотворения яйцеклетки сперматозоидом. Несмотря на то, что половые клетки являются строго дифференцированными, зигота, образующаяся в результате их слияния, обладает свойством тотипотентности, т.е. способна дать начало любому типу клеток организма. В медицинской биотехнологии в настоящее время активно исследуется возможность обратить процессы клеточной дифференцировки и вернуть клеткам свойство тотипотентности, однако, несмотря на некоторые успехи, имеющихся знаний для этого пока недостаточно.

Известно, что в процессе «перезагрузки» клеток от дифференцированного состояния к базовому уровню происходит смена эпигенетического статуса ДНК. К эпигенетическим изменениям относятся не только химические модификации ДНК и связанных с ней белков, такие, как метилирование, но и изменение пространственной организации ДНК внутри ядра. Трехмерная структура генома во многом определяет работу отдельных генов, ведь у эукариот ген и его регуляторные элементы нередко находятся очень далеко друг от друга. Совсем недавно эту трехмерную структуру научились исследовать на уровне отдельных клеток, однако для половых клеток это было невозможно из-за крайне малого количества ДНК, доступного для анализа (напомним, что половые клетки обладают одиночным набором хромосом, т.е. в два раза меньшим количеством ДНК по сравнению с соматическими клетками). В своей работе российские ученые предложили модификацию основного на сегодняшний день метода для определения трехмерной структуры генома – Hi-C, что позволило работать не только с ДНК отдельных ооцитов, но и с ДНК отдельных ядер внутри зиготы сразу после оплодотворения.

Hi-C1.jpg
Рисунок Института молекулярной биотехнологии Австрийской академии наук

Несмотря на то, что некоторые самые бросающиеся в глаза особенности организации хроматина (ДНК в комплексе с сопутствующими белками и РНК) можно различить в световой или электронный микроскоп, активное изучение трехмерной организации генома началось относительно недавно с изобретением в 2002 году метода 3С (Chromatin Conformation Capture, т.е. фиксация структуры хроматина). Суть его заключается в том, что клетки обрабатывают формальдегидом, который фиксирует комплексы ДНК с белком, затем ДНК в составе комплексов выделяют, при помощи ферментов разрезают на небольшие фрагменты и сшивают снова. В итоге у исследователя в руках оказывается библиотека гибридных фрагментов ДНК, в состав которых входят последовательности, которые в ядре были расположены рядом друг с другом. Дальше все зависит от методов анализа этой библиотеки – чем более производительные методы используются, тем больше информации можно получить.

Исходно метод 3С предполагал, что можно проверить взаимодействие двух конкретных участков в геноме («один с одним»). Однако его изобретатели быстро начали увеличивать количество букв С, добавляя новые этапы, упрощающие анализ библиотеки, что привело к появлению технологий 4С («circularized 3C», изучение взаимодействий «один со всеми»), 5С («3C carbon copy», «многие со многими») и наконец Hi-C (от «high-throughput С», при помощи которого можно исследовать «все со всеми» взаимодействия). Технология Hi-C позволяет проанализировать библиотеку полностью благодаря появлению высокопроизводительного секвенирования ДНК, хотя базовый принцип остался тот же самый, что и в 3С. С использованием Hi-C удалось построить трехмерные карты хромосом человека, и определить, что «активный» хроматин, гены в составе которого активно экспрессируются, и «неактивный» формируют в ядре два отдельных компартмента (А-В компартменты). Очередной прорыв в области изучения трехмерной организации генома случился в 2013 году, когда с появлением технологии single-cell sequencing (секвенирование единичной клетки) стало возможным изучить 3D-структуру хромосом в отдельной клетке. Однако этого по-прежнему было недостаточно для исследования ооцитов.

Hi-C2.jpg
Схема эксперимента Hi-C – от выделения отдельных ядер
до секвенирования (из статьи в Nature)

Стандартная методика Hi-C предполагает несколько этапов обогащения библиотеки с использованием модифицированных нуклеотидов, которые включаются в состав полученных фрагментов. В случае, когда исходного материала много, эти этапы помогают избавиться от ДНК, которая почему-то не прошла обработку на предшествующих стадиях. Однако если стартовое количество ДНК исчезающее мало, они приводят только к потере материала в ходе эксперимента. Авторы работы модифицировали протокол Hi-C, отбросив стадии, приводящие к потерям, и увеличили на порядок чувствительность метода, который они назвали single-nucleus Hi-C (Hi-C для единичного ядра). Для того чтобы оценить изменения, происходящие в структуре хроматина ооцитов, ученые сравнили ядра незрелых и зрелых ооцитов (яйцеклеток). Как и ожидалось, с созреванием ооцита хроматин становился более компактным и неактивным.

Ключевой эксперимент работы был призван дать ответы на вопросы, что происходит с хроматином при «перезагрузке» клетки после оплодотворения, наследуется ли состояние хроматина или формируется заново, а также отличается ли состояние хроматина в материнском и отцовском ядрах в составе зиготы, образовавшейся после оплодотворения яйцеклетки сперматозоидом (на стадии зиготы ядра сосуществуют в клетке и не сливаются).

Обнаружилось, что в составе как отцовского, так и материнского ядер можно выделить структуры первичных уровней организации – хроматиновые петли и так называемые топологически ассоциированные домены. Структуры более высокого порядка – А-В компартменты активного и неактивного хроматина в отцовском ядре детектировались слабо, однако, к удивлению исследователей, в материнском ядре они вообще не были заметны. Таким образом, авторы работы обнаружили, что зигота содержит ядро, находящееся в стадии интерфазы, т.е. неделящееся, но при этом без признаков компартментализации хроматина, что среди всех тканей и клеток млекопитающих является уникальным случаем. Исходя из этих данных, предполагается, что формирование компартментов в ядрах происходит по-разному – в материнском они формируются заново, а в отцовском наследуются, либо формируются раньше. Кроме того, на основании полученных структур и компьютерных симуляций можно предположить, что организация хроматина в материнском ядре ближе всего к организации метафазной хромосомы, т.е. материнское ядро зиготы ближе к соматической клетке, чем дифференцированный ооцит или сперматозоид. Наконец, эти данные свидетельствуют о том, что разные уровни организации хроматина (а именно петли и А-В компартменты) формируются по разным механизмам.

Хочется отметить, что подобного уровня работы стали осуществимы благодаря взрывному развитию технологий анализа ДНК и РНК буквально за последние несколько лет. Теперь авторы работы хотят дополнить свою работу анализом экспрессии генов и метилирования ДНК на уровне единичной клетки, а нам остается только удивляться и ждать, какие еще возможности сегодня-завтра подкинет ученым прогресс.

Портал «Вечная молодость» http://vechnayamolodost.ru
 30.03.2017


Читать статьи по темам:

визуализация яйцеклетки хромосомы Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

Уникальная видеозапись: овуляция крупным планом

Процесс выхода яйцеклетки из созревшего фолликула зафиксировала камера-эндоскоп, введенная в полость малого таза пациентки. На видеозаписи видно, как в образовавшемся под действием энзимов отверстии в стенке фолликула появляется красноватое выпячивание, а из него – яйцеклетка, которая направляется в фаллопиеву трубу.

читать

Фотография мозга

Американские исследователи разработали новый, более совершенный способ визуализации биологических тканей, который они назвали вычислительно-канюлярной микроскопией.

читать

Тест-полоска определит группу крови

Китайские ученые разработали одноразовый экспресс-тест на бумажной основе, позволяющий определить группу крови человека и резус-фактор с точностью более 99,9 процента.

читать

Светящиеся бактерии помогут измерить радиоактивность

Сибирские биофизики провели экспериментальное исследование биологического эффекта низкодозовой гамма-радиации. Тестовым организмом были светящиеся бактерии Photobacterium phosphoreum

читать

Создана трехмерная карта ДНК

Ученые из Кембриджа создали первую трехмерную карту генома млекопитающих в отдельной клетке. Она показывает, как вся ДНК клетки мыши свернута внутри клеточного ядра.

читать

Первые биологические суперлинзы

Для создания биологической суперлинзы для видимого света ученые из Bangor University (Великобритания) использовали цилиндрический фрагмент прозрачного паучьего шелка.

читать