Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Vitacoin

Ксенородопсин для оптогенетики

Оптогенетика получит новый молекулярный «стартер»

NsXeR.png

Блог Физтеха на сайте Naked Science

Работа по изучению светочувствительного белка NsXeR из класса ксенородопсинов опубликована в журнале Science Advances международным коллективом ученых из МФТИ, Института структурной биологии и Юлихского исследовательского центра.

Оптогенетика – современная методика, которая при помощи света позволяет управлять нервными или мышечными клетками в живом организме. Наиболее широко она используется в исследованиях нервной системы. Точность ее настолько высока, что позволяет контролировать отдельно взятые нервные клетки, «включая» или «выключая» определенные пути передачи информации. Кроме того, схожие методы используются для того, чтобы частично восстанавливать потерянное зрение и слух или управлять сокращением мышц.

Основные «инструменты» оптогенетики – светочувствительные белки, которые искусственно встраивают в нужные клетки. После встраивания белок работает на поверхности клетки и под действием света переносит ионы через клеточную мембрану. Если встроить такой белок в нейрон, то правильно подобранный световой импульс может запустить нервный сигнал или, наоборот, заглушить все сигналы – в зависимости от того, какой белок используется. Запуская сигналы от отдельных нейронов, можно имитировать работу определенных зон мозга, изменяя поведение организма. Если же встраивать такие белки в мышечные клетки, то можно внешним сигналом напрягать или расслаблять их.

Авторы работы, опубликованной в Science Advances, описали новый инструмент для оптогенетики – белок NsXeR из класса ксенородопсинов. Он способен активировать отдельные нейроны, заставляя их посылать заданные сигналы в нервную систему под действием света. Помимо применений в исследованиях нервной системы, ксенородопсины могут занять нишу управления мышечными клетками. Для активации этих клеток желательно исключить транспорт ионов кальция, так как мышечные клетки особенно чувствительны к изменению его концентрации. Если использовать белки, не избирательно переносящие разные положительные ионы (и в том числе кальций), будут появляться нежелательные побочные эффекты.

Открытый белок позволяет обойти проблему с неконтролируемым переносом кальция: он отличается своей избирательностью и при работе закачивает внутрь клетки только протоны. Этим он выгодно отличается от прямого конкурента канального родопсина, который сейчас широко используется в исследованиях: тот при работе переносит любые положительные ионы. Кроме того, ксенородопсин работает как надежный «насос», прокачивая протоны вне зависимости от их концентрации по обе стороны мембраны, а канальный родопсин лишь «открывается» под действием света, позволяя ионам идти по направлению от большей концентрации к меньшей. В обоих случаях поток положительных зарядов внутрь электровозбудимой клетки уменьшает напряжение между внешней и внутренней поверхностью мембраны. Такая деполяризация мембраны и запускает нервный или мышечный импульс. Возможность запускать такой импульс, перекачивая только протоны, уменьшит потенциальные побочные эффекты при исследованиях.

«В данный момент у нас в руках находится вся ключевая информация о механизме работы белка. На этом мы основываем дальнейшие исследования по оптимизации и подстройке параметров белка под нужды оптогенетики», – заявляет Виталий Шевченко, первый автор работы и сотрудник лаборатории перспективных исследований мембранных белков МФТИ.

Работа поддержана грантом ФЦП ИР.

Портал «Вечная молодость» http://vechnayamolodost.ru
 26.09.2017


Читать статьи по темам:

нейроны молекулярная биология Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

В поиске потерянных воспоминаний

Забытые из-за синдрома Альцгеймера воспоминания можно вернуть, если активировать так называемые энграммные нейроны, отвечающие за доступ к ним.

читать

Почему умирают нервные клетки

Если скопления патологически свернутых белков в ядрах нейронов практически не влияют на их функции, то находящиеся в цитоплазме белковые агрегаты нарушают важные транспортные пути между цитоплазмой и ядром.

читать

Успехи биологов уберегут клетки от гибели

Если мы поймем, что происходит, когда клетки лишаются кислорода и питательных веществ, можно будет выработать стратегию лечения, уменьшающую разрушительное действие инсульта.

читать

Старые аксоны способны к регенерации?

Изучение сигнальных путей, регулирующих старение нейронов, может подсказать, как побудить их аксоны регенерировать после травмы.

читать

Соединения для лечения болезни Паркинсона уже существуют

Один из уже проходящих клинические испытания препаратов для защиты здоровых клеток при лечении рака, не только защищает от гибели дофамин-продуцирующие нейроны, но и предотвращает проявление у мышей-паркинсоников поведенческих аномалий.

читать