Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Биомолтекст2020
  • vsh25
  • Vitacoin

Вирусный антииммунитет

Новый вирусный белок эффективно подавил активность CRISPR

Дарья Спасская, N+1

Американские ученые выделили вирусный белок, который подавляет активность системы CRISPR-Cas13, работающей с РНК. Кроме того, что белок позволяет бактериофагам преодолевать бактериальную систему иммунитета и размножаться, потенциально он может быть использован для контроля активности CRISPR в клетках человека, предполагают авторы статьи в Science (Meeske et al., A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity).

Система CRISPR-Cas, которая в последнее время активно применяется для редактирования генома млекопитающих, в природе служит бактериям для защиты от вирусов (бактериофагов). Система представляет собой аналог адаптивного иммунитета, который позволяет запоминать бывшие инфекции и при повторном появлении врага нацеливать нуклеазу Cas против чужеродной ДНК или РНК. Тем не менее, в процессе эволюции у бактериофагов вырабатывается антииммунитет, который позволяет им заражать бактерии, несмотря на CRISPR.

Одну из таких эволюционных уловок описали генетики из Рокфеллеровского университета во главе с Люциано Маррафини (Luciano A. Marraffini). Они обнаружили у листериофага ϕLS46 (вируса, который специализируется на бактериях из рода Listeria) небольшой белок, который ингибирует нуклеазу Cas13а в клетках Listeria seeligeri. Подобные ингибиторы из белкового семейства Acr уже были найдены для Cas9, однако ученым впервые удалось выделить такой для Cas13, и раскрыть механизм его действия.

Геном фага представляет собой молекулу ДНК, которая транскрибируется в РНК при попадании в клетку. Защитный белок Cas13 уничтожает фаговые транскрипты и подавляет размножение вируса. Он интересен также способностью распознавать РНК в клетках млекопитающих – так, Cas13а использовали для уничтожения РНК-вирусов в клетках человека, направленного выключения экспрессии генов, а также для детекции молекул in vitro в рамках метода SHERLOCK. Поэтому обнаружение ингибитора нуклеазы может быть интересно не только с точки зрения эволюции, но и для биотехнологии.

Исследователи изолировали фаги из коллекции штаммов листерии и в следующем эксперименте выделили тех, которые способны заражать Listeria seeligeri. Затем геном найденного фага ϕLS46 отсеквенировали и обнаружили там гены, похожие на Acr из других CRISPR-систем. Таких генов оказалось четыре, и чтобы определить, какой из них подавляет антифаговый иммунитет, все четыре гена по отдельности экспрессировали в клетках листерии. Найденный таким образом белок назвали AcrVIA1, что указывает на способность ингибировать CRISPR-систему типа VIA, к которой принадлежит нуклеаза Cas13a.

Самая известная CRISPR-нуклеаза Cas9 распознает и разрезает молекулы ДНК, благодаря наличию короткой РНК-затравки (в клетках человека ее роль играет молекула направляющей, или гидовой РНК). Нуклеаза Cas13а расщепляет молекулы РНК по похожему механизму действия. Исследование активности и структуры ингибитора в комплексе с мишенью показало, что он подавляет РНКазную активность Cas13a за счет прочного связывания с тем местом, где нуклеаза взаимодействует с затравкой.

Кроме того, новый ингибитор оказался очень сильным. Ранее описанные Acr-белки были способны блокировать нуклеазную активность только в большом количестве, то есть для подавления бактериального иммунитета требовалась множественная инфекция. Однако, ингибирование AcrVIA1 оказалось достаточно эффективным, чтобы каждая фаговая частица могла заразить бактериальную клетку и размножиться. Авторы работы надеются, что это свойство пригодится и для контроля активности Cas13a в эукариотах.

Портал «Вечная молодость» http://vechnayamolodost.ru


Читать статьи по темам:

бактериофаги биомолекулы геномика Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

Заменим антибиотики бактериофагами

Американский биотех-стартап Felix считает, что нашел способ сдержать распространение резистентных бактериальных инфекций.

читать

Бактериофаги с золотыми копьями

Усовершенствованный метод фаговой терапии помогает бороться с бактериями, устойчивыми к антибиотикам.

читать

Бактериофаги против цирроза

Потенциально применение лечения бактериофагами может спасти около 37% больных алкогольными гепатитами.

читать

Бактериофаги широкого спектра действия

Синтетические бактериофаги способны атаковать первоначально неспецифичные для них штаммы бактерий.

читать

Гель с бактериофагами

Антибактериальный гель, уничтожающий только определенные бактерии, может быть полезен в медицине и для защиты окружающей среды.

читать