Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • БиоМолТекст-18
  • Vitacoin

Библиотеки будущего будут сделаны из ДНК

The libraries of the future will be made of DNA
Jerome de Groot, The Conversation
Перевод: Дмитрий Иванов, N+1

Современный мир страдает от переизбытка информации, и непохоже, чтобы в будущем она стала прирастать меньшими темпами. Какую-то ее часть необходимо хранить, причем важно, чтобы ее легко было считать с носителя, а сам носитель был нечувствителен к времени. О том, как современные ученые решают эти проблемы, рассказывает статья профессора Манчестерского университета Джерома де Гроота, которую автор написал для онлайн-издания The Conversation.

Каждую секунду люди посылают друг другу шесть тысяч твитов. Пока вы читали это предложение, было отправлено 42 тысячи твитов. Считая в среднем 34 знака на один твит, получается 1428000 знаков.

Сайт Worldwidewebsize каждый день оценивает размер интернета. В тот день, когда была написана эта статья, интернет состоял из 4,59 миллиарда страниц и миллиарда сайтов. Это так называемый проиндексированный интернет, в него не входят «темный интернет» и частные базы данных.

Интернет можно измерить двумя способами. Можно измерять «контент» – в 2014 году его объем оценивался в 1024 байтов, или в миллион эксабайтов. А можно оценивать трафик, который измеряется в зеттабайтах. Глобальный трафик недавно превысил один зеттабайт, это содержание 250 миллиардов DVD.

Обратимся к более привычным носителям информации. В 2013 году в Великобритании было издано 184 тысячи книг – мировой рекорд в пересчете на число жителей. Добавьте сюда все возрастающее число способов описания каждого человека – последовательность ДНК, семейное дерево в интернете, генетический код, банковские счета, онлайн-информация всех видов, – или научные данные, которые производят и используют в глобальных масштабах, и количество информации в мире поразит наше воображение. Даже пространство, которое большинству людей необходимо для хранения фотографий и документов, в последние несколько лет очень значительно возросло.

Мы принадлежим к биологическому виду, который производит информацию в огромных количествах. «Чтение» накопленных массивов данных привело к появлению новых предсказательных моделей общественного взаимодействия. Бизнесмены и правительственные чиновники борются за использование этих массивов, поскольку им кажется, что, сделав информацию более постигаемой и управляемой, они смогут лучше, чем когда-либо, понимать, направлять и – возможно – контролировать других людей.

Но как хранить всю эту информацию? Сегодня у нас есть обычные библиотеки, обычные архивы и книжные полки. Сам интернет хранится на жестких дисках серверов по всему миру, для охлаждения которых требуется гигантское количество энергии. Онлайн-инфраструктура дорога, энергоемка и уязвима, а ее долговечность все равно ограничена – посмотрите «Крепкий орешек – 4», где обыгрывается этот сюжет.

Библиотеки будущего

Вопрос о том, как в будущем будет храниться информация, может показаться скучным, но он является ключевым для всякого, кого интересуют способы, позволяющие человеческим сообществам помнить. Хорошим примером являются семейные истории в ситуации, когда публичные архивы, такие как данные переписи населения или налоговые платежи, все больше и больше становятся доступны онлайн. Миллионы пользователей по всему миру регистрируются на таких сайтах, как Ancestry или Findmypast, чтобы получить доступ к этой информации и создать онлайн-версии своих семейных деревьев. Это быстрое разрастание информации поднимает этические вопросы о порядке доступа (например, могут ли частные компании использовать открытые данные для получения прибыли), а также о том, как информация хранится, как ею управляют и как ее используют.

Мы все заинтересованы в том, какими библиотеки и архивы станут в будущем, как они могут быть сконфигурированы и что в них будет храниться – и зачем. Так ли необходимо сохранять каждый посланный твит? Всякий раз, когда необходимо сделать выбор, что следует хранить, увековечивать, архивировать – возникают сложные дискуссии. Технологии доступа к данным, или «чтения» информации, должны быть долговечны, не то мы окажемся перед огромным массивом информации, которую нельзя будет использовать.

Итак, что же делать? Сегодня во всем мире идут широкие дискуссии о том, какую информацию следует хранить (включая различные биобанки, полные образцами биологических организмов), как ее следует хранить, где ее хранить (в Арктике, в различных районах космоса, под водой). В основном эти обсуждения ведут ученые, но некоторые технологические компании тоже участвуют. Те же, кто потратил годы, обдумывая процессы памяти, увековечивания и архивизации, – историки и библиотекари, – зачастую остаются на периферии этих дискуссий.

Нанокристаллы и ДНК

Множество различных организаций исследуют физические способы сохранения накопленной человечеством информации. Например, были предложены носители на никелевых дисках (читаемых под микроскопом) или штрих-код, наносимый лазером на кварцевое стекло.

Высокоэкспериментальные – и пока еще потребляющие очень много энергии – нанотехнологии ищут способ записывать информацию на почти что молекулярном уровне (хотя слово «записывать» применительно к ним выглядит очень устаревшим). Из нанотехнологических хранилищ информацию можно будет считывать с помощью усовершенствованной микроскопии, или известных уже сегодня химических реакций, или довольно сложных процессов, таких как превращение в нанокристаллах инфракрасного излучения во что-то «видимое». Среди наиболее причудливых планов по хранению информации – дата-центр на Луне, работающий на основе флэш-памяти, доставка цифрового контента на Марс силами частных компаний или спутники, выводимые на земную орбиту.

Но большая часть планов, обсуждаемых сегодня, похоже, связана с биологией. Различные ученые выясняют, можно ли использовать ДНК для хранения информации – так называемую память на основе нуклеиновых кислот.

Для этого информацию потребуется «переводить» в буквы G, A, T, C, соответствующие базовым нуклеиновым кислотам ДНК. Из них сложатся последовательности ДНК, которые методом секвенирования можно будет перевести обратно и прочитать оригинальное сообщение. Недавно исследователи сохранили в форме ДНК музыкальные файлы архивного качества с записью произведений Майлса Дэвиса и Deep Purple, а также короткий GIF-файл.

ДНК долговечна и все более поддается нашим усилиям по ее созданию и прочтению. В необходимых условиях она может храниться тысячи лет. Ей необходимо темное, сухое и холодное место – и, кажется, довольно небольшое.

Значительная часть этих технологий пока находится на самом начальном этапе своего развития, но успехи в нанотехнологиях и секвенировании ДНК говорят о том, что мы увидим результаты экспериментов и исследований, имеющие практическую ценность, уже через несколько лет. Возникают более широкие вопросы об этичности подобных способов сбора информации, а также о том, в какой мере они станут повсеместными. Бумажные издания и, в значительной степени, цифровые носители считаются общепринятыми и демократичными способами передачи и хранения данных. Нам еще предстоит увидеть, будут ли будущие дата-центры и способы извлекать из них информацию так же доступны и кому в грядущие десятилетия и века будет принадлежать контроль над накопленными человечеством знаниями и памятью.

Портал «Вечная молодость» http://vechnayamolodost.ru


Читать статьи по темам:

синтетическая биология база данных Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

Живая флешка

Американские ученые записали gif-изображение в виде генетического кода, встроили его в геном бактерии и снова считали с генома почти без потери качества.

читать

Элитная флешка

В цепочку генов можно записать в 60 раз больше информации, чем на сегодняшние носители. Однако мы вряд ли будем копировать в ДНК музыку или фото.

читать

Новый рекорд записи информации в ДНК

Американские ученые разработали новую технологию записи информации в ДНК, которая способна уместить до 215 петабайт данных в одном грамме нуклеиновой кислоты.

читать

Шифровка в ДНК

Американские исследователи работают над новым, исключительно надежным методом кодирования и хранения важной информации – в виде шифра, записанного в молекулах ДНК.

читать

ДНК-накопители: очередной рекорд

Сотрудники компании Microsoft совместно с учеными из Вашингтонского университета сохранили в форме нуклеиновой кислоты более 200 мегабайт данных.

читать