Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Vitacoin

Заставим светиться кого угодно

Российские биологи расшифровали генетический «секрет» светящихся грибов

Дарья Спасская, N+1

Российские биологи идентифицировали все гены, ответственные за биолюминесценцию светящегося гриба. Воссоздание путей синтеза необходимых для этого компонентов – люциферазы и люциферина – в дрожжевых клетках заставило их излучать свет, видимый невооруженным глазом. Кроме того, авторы статьи в Proceedings of the National Academy of Sciences (Kotlobay et al., Genetically encodable bioluminescent system from fungi) показали, что новая люцифераза из гриба отлично работает в качестве репортерного белка в бактериях, эмбрионах лягушки и опухолевых клетках при добавлении субстрата в среду.

Множество видов живых организмов способны испускать видимый свет за счет биолюминесценции. Светиться им позволяет фермент люцифераза, которая окисляет субстрат люциферин. Эти основные компоненты могут быть разными по структуре – так, всего известно около 40 биолюминесцентных систем, включающих семь различных семейств люцифераз. Тем не менее, полное описание системы свечения, то есть идентификация генов, кодирующих люциферазу и пути синтеза люциферинов, определение структуры этих компонентов, было сделано только для бактерий.

Люцифераза активно используется в биотехнологии в качестве репортерного белка, так как его свечение удобно детектировать. Чаще всего для этого используется люцифераза светлячка. Однако в этих случаях субстрат, то есть люциферин, каждый раз нужно добавлять извне.

Ученые из Института биоорганической химии РАН под руководством Ильи Ямпольского изучают системы биолюминесценции, которые можно было бы воссоздавать в модельных организмах и заставлять их светиться самостоятельно без добавления субстрата (так, среди авторов статьи учредители компании Planta, которая занимается выращиванием генно-инженерных светящихся растений). Бактериальные системы для этого не подходят.

«Бактерии – прокариоты, а не эукариоты, поэтому попытки „запихать“ систему прокариот целиком в систему эукариот не сработали. Чтобы бактериальную систему вшить в эукариотическое существо, растение, нужно очень много всего менять, чтобы они научились синтезировать нужные ферменты и белки. В экспериментах впрыскивают уже готовую метку, и она, когда нужно, засветилась», – объясняет N+1 Егор Задереев, чьи коллеги из Института биофизики Красноярского научного центра СО РАН участвовали в исследовании.

Два года назад ученым удалось расшифровать химическую структуру компонентов пути синтеза люциферина из вьетнамского светящегося гриба Neonotopanus nambi и установить, что грибной люциферин это 3-гидроксигиспидин, который через несколько промежуточных стадий образуется из кофейной кислоты – обычного метаболита растений. Тем не менее, для воссоздания пути синтеза в других организмах необходимо было идентифицировать гены, кодирующие ферменты синтеза, и саму люциферазу гриба.

Для решения последней задачи библиотеку всех генов Neonotopanus nambi экспрессировали в дрожжах, а на выросшие колонии брызгали люциферином. Из светящихся колоний выделяли ДНК и определяли последовательность грибного гена, ответственного за свечение. Оказалось, что грибная люцифераза кодируется геном nnLuz и не похожа на другие люциферазы, то есть представляет новое семейство.

Исследователи также полностью отсеквенировали геном Neonotopanus nambi и посмотрели, какие гены расположены по соседству с nnLuz. Среди соседей люциферазы они обнаружили два гена, предположительно кодирующих ферменты биосинтеза 3-гидроксигиспидина из кофейной кислоты. Когда эти гены вместе с геном люциферазы и геном еще одного, уже известного фермента, экспрессировали в дрожжах, такие дрожжи оказались способны светиться в темноте (при условии, что в среду добавляли кофейную кислоту, так как сами дрожжи ее не синтезируют). На следующем этапе в полученные модифицированные дрожжи дополнительно встроили три гена синтеза кофейной кислоты из тирозина, в результате чего они уже смогли светиться самостоятельно, без добавления субстратов.

«Кофейная кислота есть у всех растений, это один из промежуточных продуктов биосинтеза древесины. Теперь для получения светящихся растений требуется только один шаг – нужно кофейную кислоту „ответвлять“ на гиспидин, а его – на люциферин, еще сделать систему с люциферазой, чтобы люциферин с люциферазой встретились и растение засветилось. Это гораздо близкая и понятная переделка, не весь метаболизм нужно менять у растения, не нужно растение превращать в бактерию», – говорит Задереев.

bioluminescence.png

Свечение грибной люциферазы в дрожжах (А), в клетках человека (B), в опухоли мыши (C), в эмбрионе лягушки (D). Из статьи в PNAS.

Чтобы проверить, можно ли грибную люциферазу использовать в качестве репортерного белка в других клетках, исследователи проверили ее работу в бактериях, эмбрионах шпорцевой лягушки и клетках человека. Кроме того, ее сравнили с уже использующейся в биологии люциферазой светлячка по способности «метить» опухолевые клетки в организме мыши, и выяснили, что люцифераза гриба работает не хуже. Таким образом, ученые не только раскрыли генетическую основу биолюминесценции грибов, но и показали применимость найденной системы в биотехнологии и биомедицине.

Исследование биолюминесценции грибов началось в красноярском Институте биофизики СО РАН с участием Нобелевского лауреата Осаму Шимомура, который открыл зеленый флуоресцентный белок медузы. Довести работу до логического завершения удалось уже под руководством Ямпольского в ИБХ РАН. В работе также приняли участие ученые из Австрии, Испании, Бразилии, Англии и Японии.

Портал «Вечная молодость» http://vechnayamolodost.ru


Читать статьи по темам:

генная инженерия Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

Первые «дизайнерские дети»

Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов.

читать

Коммерциализация CRISPR-систем

Сколтех, Институт Броуда и Ратгерский университет договорились о совместном использовании изобретений в области CRISPR.

читать

Расцвет после катастрофы

Минобрнауки просит у российского народа около 3 млрд долларов на развитие запрещенной законом генной инженерии.

читать

Смешанная реальность антиутопий

Опережает ли прогресс технологий нашу этику и выдержат ли ценности, сформированные XX веком, вызовы нового времени?

читать

Намагниченный CRISPR

Американские биоинженеры разработали метод адресной доставки компонентов системы редактирования генома при помощи магнита.

читать