28 Января 2020

Лучше, чем кремний

Графен в медицине

Дмитрий Киреев, ПостНаука

В 2010 году Андрей Гейм и Константин Новоселов получили Нобелевскую премию за «новаторские эксперименты, касающиеся двухмерного материала графена». С тех пор физики и химики по всему миру начали исследовать свойства нового материала и находить им все новые практические применения. Графен используется для создания электронных чипов, сенсоров для газов, мембран для очищения воды. С появлением графена начался новый этап развития медицинских технологий и биоэлектроники.

Свойства графена

Графен – это двумерный материал, аллотропная модификация углерода. В случае графена атомы углерода выстроены в шестигранную структуру и формируют слой толщиной в один атом – это и есть графен.

graphene.jpg

Такую структуру он приобретает за счет sp2-гибридизации. На внешней оболочке атома углерода расположены четыре электрона: при sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. Поэтому из-за sp2-гибридизации графен обладает уникальными электрическими свойствами и прекрасно проводит электрический ток. Графен также имеет впечатляющие механические свойства: он гибкий, тонкий и на 97% прозрачный.

Теоретические работы доказывают, что графен очень жесткий и стойкий к механическому воздействию. В то же время, если положить его на подложку из мягкого материала, он примет его свойства. Эти характеристики полезны в биоэлектронике, в рамках которой ученые разрабатывают устройства для применения в живых организмах. В этой области приоритет отдается мягким материалам, более совместимым с тканями организма. Кремний и твердые металлы, которые используются в обычной электронике, для этого плохо подходят. С 2008 года появляются работы по графеновым нейродевайсам и биосенсорам: ученые исследуют возможности нового материала и уже достигают ощутимых результатов в этой области.

Нейродевайсы: считывание активности нейронов

На основе уникальных свойств графена можно делать нейродевайсы, считывающие активность нейронов. Базовый элемент таких устройств – графеновый (амбиполярный, полевой) транзистор, через который протекает ток, если приложить напряжение. Разработчики биоэлектроники делают чипы, на которых размещают графеновые транзисторы на гибких подложках. Поверх этого чипа выращивают нейрональные клетки. Примерно через три недели, когда клетки достаточно вырастают, они взаимодействуют между собой и спонтанно возбуждаются, производят импульс. На поверхности клетки изменяется заряд – быстро и незначительно, на десятки милливольт. Этот поверхностный заряд влияет на проводимость графена за счет эффекта поля, то есть нейрональный импульс изменяет ток на всем транзисторе. Ученые считывают его и тем самым видят активность нейронов. Нейродевайсами занимаются в Center for Microelectronics Research в Техасском университете в Остине, а также в Institute of Bioelectronics в Юлихском исследовательском центре в Германии. Технология работает в лабораторных условиях, сейчас на ее основе ученые из Техасского университета изготавливают девайсы, которые можно имплантировать в мозг. Несколько таких устройств уже создали другие исследовательские группы, они смогли протестировать их in vivo на мышах и крысах.

В перспективе эту технологию можно применять и для людей. Нейродевайсы могут облегчить жизнь людям с болезнью Паркинсона, которые часто сталкиваются с тремором, непроизвольным сокращением мышц. Чтобы регулировать судороги, пациентам имплантируются мультиэлектродные массивы, которые глубоко стимулируют головной мозг электрическими импульсами. При наступлении судорог пациент нажимает кнопку на мини-девайсе, и через электрод поступает несколько сигналов в часть мозга, которая отвечает за заболевание.

Проблема стандартных мультиэлектродных массивов в том, что они сделаны из твердого кремния. Имплантировать кремниевое устройство в мозг – все равно что пытаться поместить гвоздь в мягкую конфету. Организм реагирует на кремниевую электронику как на инородное тело. Вокруг таких устройств формируются глиальные клетки, с помощью которых мозг пытается защитить нейроны и вытолкнуть чужеродный предмет. Поэтому стимуляторы меняют каждые 2–5 лет. На основе графена можно разрабатывать совсем другие девайсы – гибкие, тонкие и мягкие. Клетки апробируют такое устройство, защитная реакция не запустится. Тогда девайсы можно будет менять намного реже – раз в несколько десятков лет.

Облегчение болезни Паркинсона – далеко не единственная область применения графеновых нейродевайсов. Они будут полезны исследователям, работающим с любыми нейродегенеративными заболеваниями. Большинство из них до сих пор недостаточно изучены: ученым не хватает данных о том, как работает человеческий мозг. Сейчас для таких наблюдений тоже используют кремниевые устройства, так что более эффективные графеновые девайсы заменят их и в исследовательских задачах. 

Сенсоры: определение биомаркеров

Другая область применения графена – создание сенсоров, которые определяют  биомаркеры. Таким образом можно измерять нейрональные биорецепторы, ДНК, иммуноглобулин, биомаркеры, связанные с раком или сердечно-сосудистыми заболеваниями. Это дает врачам новые возможности для диагностики заболеваний.

Устройства для биосенсоров тоже работают на графеновых транзисторах, но они устроены сложнее. Графен – это углеродная решетка в одной плоскости. Чтобы сделать биосенсор, молекула должна взаимодействовать с графеном. Для этого нужно построить его двух- или трехуровневую функционализацию – присоединить к графену несколько химических групп. Для начала графен функционализируется с пиреном – химическим соединением с формулой C16H10, (циклическим полиароматическим углеводородом). Эту молекулу уже можно функционализировать с другими: например, добавить к ней глюкозооксидазу, и в результате получится биосенсор для глюкозы. Когда глюкоза приблизится к глюкозооксидазе, эти два элемента вступят в химическую реакцию. Она спровоцирует изменение тока в графеновом транзисторе, которое ученые могут наблюдать и делать выводы об уровне биомаркера в организме. Группа корейских исследователей встроила глюкозный сенсор в мультифункциональные контактные линзы – они определяют уровень глюкозы на основе состава слезы. В 2017 году эту технологию испытали на кроликах. Совсем недавно российская группа создала биосенсоры на основе графена, позволяющие измерять токсины, в частности охратоксин А, считающийся одним из самых опасных. В перспективе все эти технологии позволят точнее диагностировать заболевания и отслеживать их течение.

Миф о токсичности графена

На любых конференциях неминуемо поднимается вопрос потенциальной токсичности графена. Каждый раз ученым приходится объяснять, что это не совсем так. Графен можно производить несколькими способами. Один из них – это простое размешивание графита или углерода в воде, в результате которого получаются маленькие частицы с латеральными размерами графена меньше ста нанометров. Графен такого вида действительно опасен для клеток: в 2010-х годах исследователи Ахаван и Гадери опубликовали работу, которая доказывала, что мелкие частицы проходят через клеточную мембрану и убивают клетку.

В современной биоэлектронике используется высококачественный графен, выращенный методом химического осаждения из газовой фазы. Он представляет собой однородный слой атомов на очень большой площади – до 100 на 100 миллиметров. Потом разработчики уменьшают его до порядка 100 на 100 микрометров и закрепляют на подложке. В этом случае он не может проявить токсичность, потому что не плавает среди клеток. Более того, есть несколько работ, в рамках которых ученые выращивали клетки поверх графена на подложке и на обычном стекле и сравнивали результаты. Выяснилось, что клетки растут гораздо активнее именно на графене. Графен – биосовместимый материал, ведь это обычный углерод.

Предусиление сигнала: проблема передачи данных на расстоянии

Один из недостатков графена для электроники – это отсутствие запрещенной зоны, такой области значений, которыми не могут обладать электроны в веществе. В графене у электронов произвольная энергия. Он слишком хорошо проводит ток, поэтому на его основе нельзя сделать классический транзистор с положениями 1 и 0, наличием и отсутствием тока. Графеновый транзистор никогда не закрывается: он просто проводит ток либо хорошо, либо плохо. Из-за этого он не выполняет логические операции, с которыми справляются классические кремниевые транзисторы. Для современной графеновой электроники это значительная проблема.

Биоэлектрические потенциалы, создаваемые нейрональными клетками вокруг мембраны, довольно слабые: от десяти до двухсот микровольт в зависимости от клетки, ширины щели между ней и графеном и прочих факторов. Передавать их на расстояние нескольких метров без потерь практически невозможно:  электромагнитные волны от других устройств заглушают слабый сигнал. На основе графена нельзя построить транзисторы, которые будут выполнять логические операции для усиления сигнала. Оптимальным решением будет использовать графен для измерения и создавать дополнительные транзисторы из других 2D-материалов. Они позволят предусилить сигнал от 10 микровольт до 10 милливольт, которые можно проводить без потерь на 10 километров. Это важная задача и для обычной электроники, и для медицинских девайсов. Предусиление сигнала позволит сделать все технологии беспроводными и взаимодействовать с устройствами через транзисторные системы.

Перспективы практического применения графена

Сложно сказать, когда графеновую биоэлектронику начнут широко применять на практике. Ученые испытывают нейродевайсы, биосенсоры и другие исследовательские проекты в лабораторных условиях. Чтобы вывести их на уровень медицинского применения, нужно развивать индустрию производства графеновых устройств. Для исследований обычно изготавливают от 10 до 100 аппаратов. Медицинская практика требует гораздо больших масштабов: нужны тысячи и миллионы таких устройств. Сейчас кажется, что перспектива практического применения пока далеко за горизонтом, но через 5–10 лет можно будет сказать нечто более определенное. Исследовательские группы экспериментируют с графеном в разных направлениях, применяют его для решения многих задач. Пока сложно однозначно выделить перспективные подходы, на это нужно время и инвестиции, которые помогут развивать уже имеющиеся исследования.

Об авторе:
Дмитрий Киреев – PhD in Microelectronics, The University of Texas at Austin.

Портал «Вечная молодость» http://vechnayamolodost.ru


Нашли опечатку? Выделите её и нажмите ctrl + enter Версия для печати

Статьи по теме