Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Биомолтекст2020
  • vsh25
  • Vitacoin

Точность управления жуками-киборгами повысилась

Исследователи научились управлять полетом жука-киборга с высокой точностью

DailyTechInfo по материалам Phys.org: Cyborg beetle research allows free-flight study of insects

Группа исследователей из Калифорнийского университета (University of California) в Беркли и Технологического университета Нанянга (Nanyang Technological University, NTU), Сингапур создали очередного летающего жука-киборга. Подключив это насекомое к компьютеру при помощи системы беспроводной связи, исследователи выяснили до мельчайших подробностей все тонкости работы его мускулатуры и превратили полученные знания в ряд алгоритмов, позволяющих дистанционно управлять полетом и движениями насекомого с высокой точностью, заставляя его совершать точные повороты, зависать на месте и совершать в воздухе другие «выкрутасы».

Данные о работе мышц жука собирались электродами, вживленными в тело жука в определенных местах. Крошечный микроконтроллер превращал эти данные в цифровой вид и передавал их через миниатюрное приемо-передающее устройство на компьютер, который разбирался в переданной ему «каше» из цифр и выделял сигналы управления отдельными мышцами.

Используя массив собранных данных, ученые обратили внимание на роль одной мышцы, third axillary sclerite (3Ax), которая, как считалось раньше, использовалась только для складывания крыльев насекомого. Однако эта мышца также играет роль своего рода регулятора и стабилизатора, задействованного во время полета и совершения насекомым различных маневров в воздухе. И эта информация была использована при создании новых алгоритмов управления насекомым-киборгом, обеспечивающих более высокую точность.

В качестве подопытного жука был взят гигантский цветочный жук Mecynorrhina torquata, тело которого имеет длину около 6 сантиметров и вес которого составляет порядка 8 граммов. На спине этого насекомого был установлен электронный модуль, весом в 1,5 грамма, превращающий его в киборга. Мозгом этого модуля является крошечный микропроцессор, к которому подключены шесть электродов, и весь модуль питается от миниатюрной литиевой батареи, напряжением 3,9 вольта.

Во время тестовых полетов, которые проводились в закрытом помещении, оборудованном восемью камерами слежения, управляющие импульсы подавались один раз в миллисекунду. Такая высокая частота электрической стимуляции и использование новых мышц позволили управлять полетом жука с гораздо более высокой точностью, нежели это было возможно с жуками «предыдущих версий», что было подтверждено данными со следящих камер.

«Жуки являются идеальными объектами для использования в биокибернетических исследованиях, они сами достаточно велики и сильны, благодаря чему мы можем навесить на них относительно тяжелый груз» – рассказывает Хиротэка Сато (Hirotaka Sato), ведущий исследователь, «На жука мы можем навесить маленький микрофон, тепловые датчики и многое другое, что можно использовать при поисково-спасательных операциях. Посылая жуков на разведку, мы можем исследовать области, нахождение в которых смертельно опасно для человека. А небольшие размеры насекомых позволят нам исследовать даже самые укромные уголки и щели в разрушенных зданиях».

Портал «Вечная молодость» http://vechnayamolodost.ru
18.03.2015

Читать статьи по темам:

бионика нанотехнологии Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

Микророботы – сперматозоиды

Исследователи разработали микророботов в форме сперматозоидов, движением которых можно управлять с помощью слабого переменного магнитного поля.

читать

Жуки радиационной, химической и биологической защиты

Исследователи из Южной Кореи создали крошечные гибкие электронные устройства, которые можно прикрепить к живым существам, в т.ч. к насекомым и растениям. Живые датчики смогут обнаруживать различные химические вещества и следить за состоянием окружающей среды.

читать

Микроэлектроды для имплантации в мозг: тренируемся на кроликах

Уникальные свойства нового полимера позволяют изготавливать сложные трехмерные структуры с высокой электропроводностью, что может сделать их важной составляющей электронных устройств, имплантируемых в головной мозг человека.

читать

Ткани-киборги

Создание живых «тканей-киборгов», пронизанных нанопроводниками, – первый удачный шаг на пути к комбинированию тканевой инженерии и электроники для создания тканевых имплантатов и систем для скрининга лекарственных препаратов.

читать

Воткните светлячка в розетку

Наностержни, имитирующие работу пигмента люциферина и фермента люциферазы в тельце светлячка, позволяют создать систему освещения, которая будет намного эффективнее, чем светодиодные лампы.

читать