Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • Vitacoin

Нейроны из липосом

Синтетические «нервы» работают на свету

Кирилл Стасевич, «Наука и жизнь» по материалам University of Oxford: Scientists create first light-activated synthetic tissues

Исследователи из Оксфорда создали искусственный аналог нервной цепочки: синтетические клетки, упакованные с помощью 3D-принтера в некое подобие проводящей ткани, оказались способны проводить электрический импульс. Сразу скажем, что клетки в данном случае – это крохотные капли воды объёмом 50-100 пиколитров, заключённые в однослойную липидную мембрану. Понятно, что в таких каплях содержалась не только вода, в них была ещё ДНК с генами, кодирующими трансмембранные белки, и весь необходимый аппарат белкового синтеза. Трансмембранные белки, синтезировавшиеся в «клетке», формировали в мембране сквозной канал – так между двумя каплями появлялся «межклеточный контакт», через который мог проскочить электрический сигнал. Работа «нервной цепи» зависела от освещения – в «клетках» находился ещё и особый фоточувствительный белок, который под действием света связывался с ДНК и активировал записанные в ней гены трансмембранных белков.

Плотной упорядоченной укладки капель достигали, как было сказано выше, с помощью 3D-принтера. Сама технология трёхмерной печати из таких «клеток» разработана уже давно, но сейчас авторам работы пришлось разработать для них новый рецепт, чтобы и сами «клетки», и содержащиеся в них молекулярные машины для транскрипции (синтеза РНК-копий на ДНК) и трансляции (синтеза белка на РНК), пройдя через принтер, оставались бы в рабочем состоянии.

Подробно про «синтетические нервы» можно узнать из статьи в Science Advances (Light-activated communication in synthetic tissues). Главными достижениями Майкл Бут (Michael J. Booth) и его коллеги считают то, что им удалось встроить в нервную цепочку световой выключатель, и что распространение импульса не ограничивалось двумя «клетками», что сигнал шёл дальше – к третьей капле, четвёртой, десятой и т. д.

synthetic_nerve.jpg

Схема передачи сигнала по цепочке «синтетических клеток»: гены под действием света синтезируют трансмембранные белки, которые встраиваются в мембраны и формируют канал для передачи электрического импульса. (Иллюстрация Michael Booth / University of Oxford).

В такой искусственной системе вполне можно изучать некоторые закономерности распространения импульса по проводящим тканям, однако в перспективе исследователи хотят совместить искусственные клетки с настоящими. Правда, для этого нужно решить две технологические проблемы: во-первых, напечатанные 3D-принтером комплексы капель «живут» в масляной среде, а настоящим клеткам нужен водный раствор; во-вторых, белки пор в искусственных клетках встраиваются в однослойную липидную мембрану, тогда как у настоящих клеток она двуслойная, и неизвестно, сформируется ли между ними трансмембранная белковая пора. Может быть, контакт между искусственной и настоящей клеткой получится организовать в виде синапса, когда между клеточными мембранами остаётся определённое пространство, а передача импульса происходит с помощью специальных химических молекул-нейромедиаторов. Говорить о практическом применении тут пока рано, хотя, если дать волю фантазии, можно представить себе, как в будущем мы сможем создавать синтетические заплатки для мышц, а то и для мозга.

Портал «Вечная молодость» http://vechnayamolodost.ru
 07.04.2016

Читать статьи по темам:

нанобиология липосомы нейроны Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

С точностью до вируса

В основе технологии, разработанной в ИФП СО РАН, лежит кварцевый резонатор, который используется в качестве сенсора. Его чувствительность позволяет регистрировать мельчайшие частицы и даже одиночные вирусы.

читать

Графен вместо вживленных в мозг электродов

Исследователям из Италии и Великобритании удалось продемонстрировать, как графен, один из самых удивительных материалов на свете, может взаимодействовать с нейронами.

читать

Бактериям предложили электропорацию вместо укола

Инженеры и биологи из MIT создали прибор, позволяющий вводить фрагменты ДНК в фактически любой тип клеток, заставляя их расширить поры в их оболочке при помощи тока.

читать

Ферменты заточили в камеры из ДНК

Ученые из Университета штата Аризона построили наноразмерные камеры из ДНК, внутрь которых они поместили ферменты. Эксперименты показали, что активность ферментов при этом увеличилась в 8 раз.

читать

Биоразлагаемые биосенсоры

Испытанные in vitro и на лабораторных крысах беспроводные биосенсоры не уступают проводным аналогам и без побочных эффектов растворяются в спинномозговой жидкости живых крыс в течение нескольких дней.

читать