Подписаться на новости
  • Сенатор
  • ООО "Ай Вао"
  • vsh25
  • mmif-2019
  • Vitacoin

Астроциты помогут при травме спинного мозга?

Нейроны спинного мозга удалось восстановить в живом организме

Кирилл Стасевич, Компьюлента

В отличие от головного мозга, в котором новые нейроны продолжают кое-где появляться в течение всей жизни (а не только в период созревания), у спинного мозга такой счастливой особенности нет: если у взрослого человека повредились и погибли спинномозговые нейроны, ему придётся мириться с этой утратой всю оставшуюся жизнь. Быть может, даже в инвалидной коляске.

Учёные, впрочем, упорно ищут пути восстановления спинномозговых клеток. Самый очевидный, наверное, способ связан с использованием стволовых клеток – чтобы они превратились в нейроны и ликвидировали повреждение. Однако исследователям из Юго-Западного медицинского центра при Техасском университете (США) как будто удалось найти иное решение: они превратили в нейроны служебные клетки нервной системы, астроциты.

Такие попытки предпринимаются с давних пор. Так, в 2008 году специалисты из Стэнфорда (США) превратили клетки кожи крысы в нейроны, проведя их через «стволовоподобное» состояние, а в 2010-м та же группа сумела уже напрямую провести это превращение, использовав три-четыре белка (через год то же самое удалось сделать для человеческих клеток). Исследователи из Мюнхенского университета Людвига – Максимилиана (Германия) в 2012 году превратили в нейроны мозга перициты, которые в кровеносных сосудах мозга входят в гематоэнцефалический барьер; через год в Лундском университете (Швеция) эта процедура была повторена для астроцитов в мозге живых мышей.

Но всё это, легко заметить, проделывали для клеток мозга, и команда Чунь-Ли Чжана (Chun-Li Zhang) захотела проверить, можно ли таким образом получить нейроны для мозга спинного. Исследователи снова выбрали астроциты, потому что эти служебные клетки запускают залечивание и рубцевание нервных тканей после повреждения, защищая выжившие нейроны, но заодно тормозя рост клеток в больной зоне.

Астроциты регулируют синаптическую передачу сигнала несколькими способами. Аксон передаёт нервный сигнал дендриту за счёт выброса нейротрансмиттера (обозначен зелёным цветом) – в данном случае глутамата. Кроме того, аксон высвобождает АТФ (жёлтый). Эти соединения вызывают перемещение кальция (фиолетовый) внутрь астроцитов, что побуждает их вступить в общение друг с другом за счёт высвобождения собственного АТФ. Астроциты могут усилить передачу нервного сигнала с помощью выброса такого же нейротрансмиттера (глутамата) или ослабить сигнал путём поглощения нейротрансмиттера или выброса связывающих его белков (синие). Кроме того, астроциты могут выделить сигнальные молекулы (красные), которые заставят аксон увеличить или уменьшить выброс нейротрансмиттера, когда он возобновит импульсацию (Дуглас Филдз, «Другая часть мозга» – ВМ.

С помощью модифицированных вирусов, доставлявших гены в астроциты, учёные выяснили, что для перепрограммирования клеток достаточно одного-единственного гена SOX2. Астроциты, получив SOX2, превращались в нейробласты, предшественники нейронов. Метод работал как в культуре клеток, так и в живых мышах с повреждениями спинного мозга. Некоторые из этих нейробластов превращались в обычные нейроны, и эффективность процесса можно было удвоить, если клетки дополнительно стимулировали вальпроевой кислотой.

Новые нейроны, как пишут исследователи в Nature Communications (Zhida Su et al. In vivo conversion of astrocytes to neurons in the injured adult spinal cord), не оставались в одиночестве, а образовывали соединения с моторными нейронами спинного мозга.

Главный пафос работы в том, что новые спинномозговые нейроны были получены прямо в живом организме, и здесь, конечно, можно начать фантазировать о тех временах, когда к парализованным людям вернётся подвижность, и не благодаря супертехнологичным протезам, а с помощью вот такого превращения одних клеток в другие. Превращение тут непрямое, клетки проходят через стадию предшественников нейронов, однако в этом есть свой плюс: хотя весь процесс занимает больше времени, чем прямое превращение, в результате из одного астроцита получаются нейробласты, которые могут делиться и давать больше одного нейрона на один исходный астроцит.

Впрочем, вопросов к работе много. Во-первых, пока что метод не слишком эффективен: лишь 3-6% астроцитов в месте введения генотерапевтического вектора удаётся превратить в нейробласты, и получающихся нейронов не хватает не только для того, чтобы у животного проявились какие-то видимые улучшения, но и для проверки (с помощью электродов) функциональности новых клеток. По сути, авторам удалось пока что доказать только то, что такой подход можно реализовать в живом спинном мозге.

Во-вторых, тут есть один парадокс, связанный с использованным для превращения геном SOX2. По словам Мариуса Вернига (Marius Wernig) из Стэнфорда (под его руководством в 2008 году удалось превратить кожные клетки в нейроны), SOX2 обычно активен в предшественниках нейронов, но нужен он для того, чтобы предотвратить превращение нейробласта в нейрон. Почему же тогда именно с его помощью астроциты превращаются в нейроны? Авторы работы отвечают на это так: всё дело в степени активности гена: в зависимости от этого клетка либо остаётся такой, как была, либо начинает перепрограммироваться. В общем, без дополнительных исследований тут не обойтись...

Подготовлено по материалам Юго-Западного медицинского центра при Техасском университете:
Researchers generate new neurons in brains, spinal cords of living adult mammals.

Портал «Вечная молодость» http://vechnayamolodost.ru
27.02.2014

Читать статьи по темам:

клетки-предшественники клеточная терапия нейроны репрограммирование клеток травма Версия для печати
Ошибка в тексте?
Выдели ее и нажми ctrl + enter
назад

Читать также:

Паркинсоникам помогут астроциты?

Имплантация в мозг астроцитов, выращенных из глиальных клеток-предшественников, может стать многообещающим подходом в лечении болезни Паркинсона.

читать

Клеточная трансплантация восполнила в мозге недостаток тормозов

Перед стволовыми клетками открываются все новые перспективы клинического применения. Ученые из Калифорнийского университета смогли с их помощью справиться с эпилепсией, которая плохо поддается лекарственной терапии.

читать

Человеческие нейроны сделали мышей умнее

Человеческие эмбриональные стволовые клетки удалось дифференцировать в нервные клетки-предшественники, введение которых способствовало восстановлению способности к обучению и запоминанию у мышей.

читать

Стволовые клетки в лечении нейродегенеративных заболеваний (6)

Разработка методов лечения рассеянного склероза с помощью стволовых клеток идёт по двум основным направлениям: подавление аутоиммунной реакции, разрушающей миелиновые оболочки нервных волокон и трансплантация продуцирующих миелин нервных клеток-предшественников.

читать

Стволовые клетки в лечении нейродегенеративных заболеваний (5)

Результаты доклинических исследований в ближайшем будущем могут позволить разработать клинические методы лечения, позволяющие с помощью стволовых клеток остановить дегенерацию нейронов при амиотрофическом латеральном склерозе.

читать